

ANANDALAYA PERIODIC TEST – 1 Class : XII

M.M: 40 Time: 2 Hours

General Instructions:

- i) All questions are compulsory.
- ii) This question paper contains 18 questions.
- iii) Question 1-8 in Section A are very short-answer type questions carrying 1 mark each.
- iv) Questions 9 13 in Section B are short-answer type questions carrying 2 marks each.
- v) Questions 14 17 in Section C are long-answer-I type questions carrying 4 marks each.
- vi) Question 18 in Section D is long-answer-II type questions carrying 6 marks.

SECTION-A

1. Let $f: R \to R$ and $g: R \to R$ be two functions such that $f \circ g(x) = \sin x^2$ and $g \circ f(x) = \sin^2 x$, (1) then f(x) and g(x) are (a) $f(x) = x^2$ and $g(x) = \sin x$ (b) $f(x) = \sin x$ and $g(x) = x^2$ (c) $f(x) = \sin^2 x$ and $g(x) = \sqrt{x}$ (d) $f(x) = \sin x$ and $g(x) = \sqrt{x}$

2. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, then $A + A' = I$, if the value of α is
(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{3\pi}{2}$
(1)

- 3. For real x, let $f(x) = x^3 + 5x + 1$. then(1)(a) f is one-one but not onto in R.(b) f is onto in R but not one one in R.(c) f is one one and onto in R.(d) f is neither one one and onto in R.
- 4. If k is a scalar and I is a unit matrix of order 3, then $adj(kI) = \dots$ (1) (a) k^3I (b) k^2I (c) $-k^3I$ (d) $-k^2I$
- 5. Construct a 3 x 2 matrix A, whose elements are given by $a_{ij} = \frac{(i+2j)^2}{2}$. (1)
- 6. If f: R \rightarrow R be defined by $f(x) = (3 x^3)^{1/3}$, then find $f \circ f(x)$. (1)

OR

Let $A = \{1, 2, 3, ..., 15, 16\}$. Let R be the equivalence relation on A x A defined by (a, b) R (c, d) if and only if ad = bc. Find the equivalence class for [(1,3)].

7. Find the area of the triangle with vertices at the points (0,0), (6, 0), (4,3). (1)

Show that the determinant $\begin{vmatrix} a & b & ap + b \\ b & c & bp + c \\ ap + b & bp + c & 0 \end{vmatrix} = 0$, if a, b, c are in G.P.

8. If the matrix
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$
, find |adj A| without computing adj A.

SECTION-B

(1)

- 9. If the function f: $\mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 2$ and g: $\mathbb{R} \to \mathbb{R}$ be given by $g(x) = \frac{x}{x-1}$, (2) $x \neq 1$, find f o g and g o f and hence find $(f \circ g)(2)$ and $(g \circ f)(-3)$.
- ¹⁰ If $A = \begin{bmatrix} 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & 0 \\ 4 & 5 & -3 \end{bmatrix}$, then verify that B'A' = (AB)'. (2)

If the matrix $\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$ is a skew symmetric matrix, find the value of a, b, c.

11. If
$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (x - y)(y - z)(z - x)$$
, and x, y and z all are different and $\begin{vmatrix} 1 & x^2 & x^3 + 1 \\ y & y^2 & y^3 + 1 \\ z & z^2 & z^3 + 1 \end{vmatrix} = 0$ (2)
then show that $xyz = -1$.

- 12 Using properties of determinants prove that $\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a 1)^3.$ (2) Using Properties of determinants prove that: $\begin{vmatrix} a & b & c \\ a - b & b - c & c - a \\ b + c & c + a & a + b \end{vmatrix} = a^3 + b^3 + c^3 - 3abc.$
- 13. Prove that the diagonal elements of a skew symmetric matrix are all zero. (2)

SECTION-C

- 14. Show that the relation R in the set $A = \{x : x \in W, 0 \le x \le 12\}$ given by (4) $R = \{(a, b); |a - b| \text{ is a multiple of } 4\}$ is an equivalence relation. Also find the set of all elements related to 2.
- 15. If $A = \begin{bmatrix} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$, find A^{-1} by using elementary column transformations. (4) OR If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and $A^3 - 6A^2 + 7A + kI = 0$.find k.
- 16. Express the following matrix as the sum of a symmetric matrix and a skew symmetric matrix and (4) verify your result: $\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$

17. Consider the function $f: \mathbb{R}^+ \to [-5, \propto)$ defined by $f(x) = 9x^2 + 6x - 5$, where \mathbb{R}^+ is the set of all (4) non-negative real numbers. Show that *f* is invertible and find its inverse.

OR

Let $f, g: R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| - x, for all $x \in \mathbb{R}$, then find f o g and g o f. Hence find (*f o g*) (-2), (*f o g*) (4) and (g o f) (-2)

SECTION-D

18. Two schools P and Q want to award their selected students on the values of Discipline, Politeness (6) and Punctuality. The school P wants to award ` x each, ` y each and ` z each for the three respective values to its 3, 2 and 1 students with a total award money of ` 1000. School Q wants to spend ` 1500 to award its 4, 1 and 3 students on the respective values. (by giving the same award money for the three values as before). If the total amount of awards for one prize on each value is ` 600, using matrices, find the award money for each value by matrix method.

OR

Using properties of determinants prove that :

 $\begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} = (ab + bc + ca)^3.$